
xmlformat Tutorial
Paul DuBois <paul@kitebird.com>

Table of Contents
1. Introduction .. 1
2. Formatting a Document .. 1
3. Using a Configuration File ... 2
4. Discovering "Inherited" Formatting Options ... 6
5. Checking for Unconfigured Elements .. 7

1. Introduction
This document is a user guide that provides a tutorial introduction to the xmlformat program. Another
document, The xmlformat Document Formatter, describes the capabilities of xmlformat in more detail.

2. Formatting a Document
Suppose you have an XML document named doc1.xml that looks like this:

<event>
<description>I bought a new coffee cup!</description>
<date><year>2004</year><month>2</month><day>1</day></date>
</event>

Suppose further that you want it to look like this:

<event>
<description>I bought a new coffee cup!</description>
<date>
<year>2004</year>
<month>2</month>
<day>1</day>
</date>
</event>

By happy coincidence, that happens to be exactly the default output style produced by xmlformat. To
reformat your document, all you have to do is run xmlformat with the document filename as the argu-
ment, saving the output in another file:

% xmlformat doc1.xml > output

Note: % represents your shell prompt; do not type it as part of the command.

If you are confident that the output style produced by xmlformat will be as you desire, you can be reck-
less and perform an in-place conversion:

1

% xmlformat -i doc1.xml

In this case, xmlformat reads the document from the input file, reformats it, and writes it back out to the
same file, replacing the file's original contents. If you are not quite so reckless, use -i in conjunction
with a -b option to make a backup file that contains the original document. -b takes an argument that
specifies the suffix to add to the original filename to create the backup filename. For example, to back
up the original doc1.xml file in a file named doc1.xml.bak, use this command:

% xmlformat -i -b .bak doc1.xml

3. Using a Configuration File
In the preceding example, the desired output style for doc1.xml was the same as what xmlformat pro-
duces by default. But what if the default style is not what you want? In that case, you must tell xml-
format how to handle your document. This is at once both the weakness and strength of xmlformat.
The weakness is that it is extra work to instruct xmlformat how you want it to format a document. The
strength is that it's possible to do so. Other XML formatters do not require any extra work, but that's be-
cause they are not configurable.

Suppose doc2.xml looks like this:

<example><title>Compiling and Running a Program</title>
<para>To compile and run the program,
use the following commands, where
<replaceable>source-file</replaceable>
is the name of the source file:</para><screen>
<userinput>cc</userinput> <replaceable>source-file</replaceable>
<userinput>./a.out</userinput>
</screen>
</example>

That's ugly, and you want it to rewrite it like this:

<example>

<title>Compiling and Running a Program</title>

<para>
To compile and run the program, use the following commands,
where <replaceable>source-file</replaceable> is the name of
the source file:
</para>

<screen>
<userinput>cc</userinput> <replaceable>source-file</replaceable>
<userinput>./a.out</userinput>
</screen>

</example>

The key characteristics of this rewrite are as follows:

xmlformat Tutorial

2

• Child elements of the <example> element are separated by blank lines, but not indented within it.

• The text inside the <para> element is reformatted, adjusted to 60 characters per line and indented.

• The contents of the <screen> element are left alone.

Unfortunately, if you run doc2.xml through xmlformat, it comes out like this:

<example>
<title>Compiling and Running a Program</title>
<para>To compile and run the program,
use the following commands, where
<replaceable>source-file</replaceable>
is the name of the source file:</para>
<screen>
<userinput>cc</userinput>
<replaceable>source-file</replaceable>
<userinput>./a.out</userinput>
</screen>
</example>

This output is unsuitable. Among the offenses committed by xmlformat, two are most notable:

• The text of the <para> element has been left alone, not reformatted.

• The <screen> element content has been reformatted, not left intact.

In these respects, it appears that xmlformat has done exactly the opposite of what was wanted! Further-
more, had you used the -i option to reformat the file in place without using -b to make a backup, at
this point you would have a file containing a <screen> element that you'd have to fix up by hand to
restore it to its original condition.

What a worthless, worthless program!

The rewriting of the <screen> element points to an important lesson: Before trusting xmlformat with
your documents, it's best to run some tests and tune your configuration as necessary to make sure it will
produce the results you want. Otherwise, you may produce changes that affect the integrity of your doc-
uments. This is particularly true when they contain elements such as <screen> or
<programlisting> that should be copied verbatim, without change.

Configuring xmlformat amounts to writing a configuration file that instructs it what to do. For
doc2.xml, that means telling xmlformat to leave the <screen> element alone, to normalize the text
of the paragraph to fill lines and wrap them to a given length, and to put blank lines around sub-elements
of the <example> element.

Let's begin by creating a very basic configuration file. What should we call it? xmlformat can read con-
figuration settings from a file named on the command line with a -f or --config-file option. This
means you can name the file whatever you want. However, if you put the settings in a file named xml-
format.conf in the current directory, xmlformat will read the file automatically. That's an easier ap-
proach, because you won't need to use a command-line option to specify the configuration file. So create
a file named xmlformat.conf that contains the following two lines:

screen
format = verbatim

xmlformat Tutorial

3

These lines specify that <screen> elements should be formatted as verbatim elements. That is, xml-
format should reproduce their content in the output exactly as it appears in the input, without modifica-
tion. The first line must begin in column 1 (no preceding spaces or tabs). The second line must begin
with at least one space or tab. Presence or absence of whitespace is how xmlformat distinguish the
names of elements to be formatted from the instructions that indicate how to format them.

After creating xmlformat.conf, run xmlformat again to process doc2.xml. It reads the newly
created configuration file and produces this result:

<example>
<title>Compiling and Running a Program</title>
<para>To compile and run the program,
use the following commands, where
<replaceable>source-file</replaceable>
is the name of the source file:</para>
<screen>
<userinput>cc</userinput> <replaceable>source-file</replaceable>
<userinput>./a.out</userinput>
</screen>
</example>

That's a little better: xmlformat has not destroyed the <screen> element by reformatting it. But prob-
lems remain: The paragraph content has not been reformatted, and there are no blank lines between sub-
elements.

Let's take care of the paragraph next. To set up its formatting, add a section to xmlformat.conf for
<para> elements:

para
format = block
normalize = yes
wrap-length = 60
subindent = 1

screen
format = verbatim

The order of sections in the configuration file doesn't matter. Put them in the order that makes most
sense to you. The order of option lines under the initial section line doesn't matter, either.

The first two options in the para section specify that the <para> element is a block element, and that
text within it should be normalized. Turning on the normalize option tells xmlformat that it's okay to
reformat the text within the element. This means that runs of whitespace within the text are collapsed to
single spaces, and that whitespace at the beginning and end of the text can be adjusted (typically to put
the text on different lines than the element's opening and closing tags). Enabling normalization also al-
lows you to perform text line-wrapping and indenting. The wrap-length option specifies the maxim-
um number of characters per line, and subindent specifies the indenting of text and sub-elements, re-
lative to the element's own tags. Note that when xmlformat performs line-wrapping, it includes the cur-
rently prevailing indent as part of the line length. (For example, if the prevailing indent is 20 spaces and
wrap-length value is 60, lines will contain at most 40 characters following the indentation.)

After adding the para section to xmlformat.conf, xmlformat produces this result:

<example>
<title>Compiling and Running a Program</title>
<para>

xmlformat Tutorial

4

To compile and run the program, use the following
commands, where
<replaceable>source-file</replaceable>
is the name of the source file:
</para>
<screen>
<userinput>cc</userinput> <replaceable>source-file</replaceable>
<userinput>./a.out</userinput>
</screen>
</example>

The paragraph now is wrapped and indented. However, it doesn't seem to be wrapped quite correctly,
because the <replaceable> element actually would fit on the previous line. This happens because
no formatting options were specified for <replaceable> in the configuration file. As a result, it is
treated as having the default element type of block, using the default behavior that block elements are
written out beginning on a new line.

To fix this problem, we should configure <replaceable> as an inline element. That will cause it to
be formatted inline with the other text (and thus line-wrapped along with it). Modify the configuration
file to include a replaceable section: this:

para
format = block
normalize = yes
wrap-length = 60
subindent = 1

replaceable
format = inline

screen
format = verbatim

The resulting output after making this change is as follows:

<example>
<title>Compiling and Running a Program</title>
<para>
To compile and run the program, use the following
commands, where <replaceable>source-file</replaceable> is
the name of the source file:
</para>
<screen>
<userinput>cc</userinput> <replaceable>source-file</replaceable>
<userinput>./a.out</userinput>
</screen>
</example>

We're getting close now. All we need to do is space out the <example> child elements with a blank
line in between. Sub-element spacing is controlled by three formatting properties:

• entry-break controls spacing after the opening tag of an element (that is, the spacing upon entry
into the element's content).

• element-break controls the spacing between sub-elements.

xmlformat Tutorial

5

• exit-break controls spacing before the closing tag of an element (that is, the spacing upon exit
from the element's content).

The value for each of these formatting options should be an integer indicating the number of newlines to
write. A value of 1 causes one newline, which acts simply to break to the next line. To get a blank line,
the break value needs to be 2. Modify the configuration file by adding a section for <example> ele-
ments:

example
format = block
entry-break = 2
element-break = 2
exit-break = 2
subindent = 0

para
format = block
normalize = yes
wrap-length = 60
subindent = 1

replaceable
format = inline

screen
format = verbatim

The resulting output is:

<example>

<title>Compiling and Running a Program</title>

<para>
To compile and run the program, use the following commands,
where <replaceable>source-file</replaceable> is the name of
the source file:
</para>

<screen>
<userinput>cc</userinput> <replaceable>source-file</replaceable>
<userinput>./a.out</userinput>
</screen>

</example>

We're done!

You may be thinking, "Wow, that's a lot of messing around just to format that tiny little document."
That's true. However, the effort of setting up configuration files tends to be "reusable," in the sense that
you can use the same file to format multiple documents that all should be written using the same style.
Also, if you have different projects requiring different styles, it tends to be easiest to begin setting up the
configuration file for one project by beginning with a copy of the file from another project.

4. Discovering "Inherited" Formatting Options

xmlformat Tutorial

6

In the final formatting of doc2.xml, note that the paragraph tags appear on separate lines preceding
and following the paragraph content. This occurs despite the fact that the configuration file specifies no
break values in the para section, because if you omit formatting options for an element, it "inherits" the
default properties. In the case of the <para> element, the relevant unspecified properties are the
entry-break and exit-break values. For block elements, both have a value of 1 by default (that
is, one newline), which causes a line break after the opening tag and before the closing tag.

If you want to see all the formatting options xmlformat will use, run it with the --show-config op-
tion. For example:

% xmlformat --show-config
*DEFAULT
format = block
entry-break = 1
element-break = 1
exit-break = 1
subindent = 1
normalize = no
wrap-length = 0

*DOCUMENT
format = block
entry-break = 0
element-break = 1
exit-break = 1
subindent = 0
normalize = no
wrap-length = 0

example
format = block
entry-break = 2
element-break = 2
exit-break = 2
subindent = 0
normalize = no
wrap-length = 0

para
format = block
entry-break = 1
element-break = 1
exit-break = 1
subindent = 1
normalize = yes
wrap-length = 60

replaceable
format = inline

screen
format = verbatim

No configuration file is specified on the command line, so xmlformat reads the default configuration
file, xmlformat.conf. Then it displays the resulting configuration options. You can see that the
para section has inherited break values from the *DEFAULT section.

5. Checking for Unconfigured Elements

xmlformat Tutorial

7

Any elements appearing in the input document that are not named in the configuration file are formatted
using the values of the *DEFAULT section. If the file contains no *DEFAULT section, xmlformat uses
built-in default values.

If you want to see whether there are any elements in the document for which you haven't specified any
formatting options, run xmlformat with the --show-unconfigured-elements option. For ex-
ample:

% xmlformat --show-unconfigured-elements doc2.xml
The following document elements were assigned no formatting options:
title

As it happens, the title already formats in the desired fashion, so there's no necessity of adding anything
more to the configuration file.

xmlformat Tutorial

8

	xmlformat Tutorial
	Table of Contents
	1. Introduction
	2. Formatting a Document
	3. Using a Configuration File
	4. Discovering "Inherited" Formatting Options
	5. Checking for Unconfigured Elements

